If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-23t+12=0
a = 5; b = -23; c = +12;
Δ = b2-4ac
Δ = -232-4·5·12
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-17}{2*5}=\frac{6}{10} =3/5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+17}{2*5}=\frac{40}{10} =4 $
| 5t^2-23+12=0 | | -4b=-4/3 | | 4+8x=-10x+x | | x2-2x–8=0 | | 3(x+15)−6x=-6(x−3) | | 3x-5x+x=7-9 | | 32+18r+r^2=0 | | 10-5(3+2x)+6x=5 | | 5/4x+1=1/4+1/4x= | | 3x+2(5-x)+5=16 | | 5x-(4x+2)=2x-46 | | 8x-2+3x+2=1 | | 5x-15=6x+9 | | g+3/g-2=55/21 | | 4(3x-1)-2=x-5 | | w^2=-8w-19 | | 25+n/5=12 | | 5+4d=-13-2 | | X=6y=-3 | | 5x-5/x-5x+15/x=1 | | 16-7n=-8n-3n | | 2/3(5x+7)=8x | | 3x+10=118 | | X+(x÷2)=40 | | 3x+10=124 | | 5a-6=3a+2;4 | | (8.20n)-8.25+3.25n=800 | | 5x-19+2x+5=119 | | 3x+-2=64 | | 4+4y=4(y+1)= | | 2(p+5)+3=(2p-1) | | X=320+-1y |